

Planning for Success – An Operational Test Program for Unmanned Observing Strategies

Robbie Hood, Director NOAA Unmanned Aircraft Systems (UAS) Program

NOAA Office of Oceanic and Atmospheric Research 7 March 2012

NOAA UAS Strategic Vision and Goals

- Vision
 - UAS will revolutionize NOAA observing strategies by 2014 comparable to the introduction of satellite and radar assets decades earlier
- Goals
 - Goal 1: Increase UAS observing capacity
 - Goal 2: Develop high science-return UAS missions
 - High impact weather monitoring,
 - Polar monitoring
 - Marine monitoring
 - Goal 3: Transition cost-effective, operationally feasible UAS solutions into routine operations

Tools for Building UAS Capacity

3

NOAA and NASA Manned and Unmanned Flight Capabilities

Fuel consumption (gph) for nominal mission

AND ATMOSPA

NOAA

DEPARTMENT OF CO

S'N NATIONAL

NOAA Unmanned Transition Process

Completed Science Campaigns

- Global Hawk Pacific (March-April 2010)
 - 11 instruments
 - 4 science missions, 76 hours
 - First Global Hawk Science Mission
 - Flights spanned 12 to 85 deg N Latitudes
- Genesis and Rapid Intensification Processes (August-September 2010)
 - 4 Instruments
 - 5 science missions, 114 hours total
 - First Global Hawk severe storm over flight
- Winter Storm Pacific and Atmospheric Rivers (February-March 2011)
 - 2 Instruments
 - 3 science missions, 70 hours total
 - First operational dropsonde deployment from a UAV

Winter Storm and Pacific Atmospheric Rivers (WISPAR) Experiment

- Demonstration of the scientific application of the Global Hawk dropsonde system for NOAA operational and research objectives
- 3 science flights targeted:
 - Atmospheric Rivers
 - Winter Storms Reconnaissance
 - Arctic Weather
- February-March 2011
- Just under 70 hours flown
- 177 total dropsondes deployed
- Additional measurements from HAMSR

NOAA

Guided Dropsondes

GALE UAS

Partnership with NOAA, Embry-Riddle U., and Dynawerks

Performance	Estimated	
Attribute	Performance	Jose
Mission Weight	8.0 lb	
Cruise Speed	42 kts	
Dash Speed	110 kts	
Stall Speed	22 kts	
Mission Endurance	60 minutes	

Effort lead by ose Cione, AOML-HRD and Nancy Ash, OMAO-AOC

Unmanned Surface Vehicles

9

Emergency Integrated Life Saving Lanyard (EMILY)

- Developed through Phase 3 Navy SBIR
- 65 inch Unmanned Surface Vehicle (USV)
- Testing this summer with barometric pressure, air and sea surface temperature, salinity, wind speed and direction, humidity, camera, and satellite communication payload

Operational Test Program for Unmanned Observing Strategies

GENERAL CONCEPT: Shared testing and evaluation of platforms, payloads, and observing strategies including targeted observation schemes, data assimilation techniques and information management plans

VISION : Accelerate accurate warnings and forecasts for hazardous weather and disasters by minutes, hours, and days

MISSION: Prompt operational transition of innovative unmanned observing strategies maximized for measureable societal benefit, scientific return, cost-effectiveness, and operational efficiencies

PERIOD OF PERFORMANCE: 2014-2020

- Improve 3-7 day weather forecast of high impact oceanic events with targeted unmanned observing strategies
- Improve delivery of real-time information needed for warn-on-forecast of rapidly developing weather
- Develop interagency rapid response observing fleet to provide critical situational awareness information needed during high impact events and disasters
- Improve understanding and prediction of climate change linkages to high impact weather events using consistent weekly or monthly unmanned observations

Increasing Technology Readiness

Proven	 Dropsondes vertical profiles (NSF/NOAA) Passive microwave temperature and water vapor images and vertical profiles (NASA) Upper tropospheric /stratospheric water vapor (NASA/NOAA)
Maturing	 Ocean surface wind speed and precipitation images (NASA/NOAA) Dual-polarized Doppler radar vertical profiles of wind and precipitation including ocean surface (NASA) Lidar vertical profiles of wind in clear air (NASA) Water vapor soundings (NASA/Wisconsin) Cloud physics lidar observations (NASA)
Emerging	 Lightweight, lower cost UAS dropsondes (Navy) Aircraft-launched unmanned air and water vehicles (DOD/NASA/NOAA) Ship-launched unmanned surface water vehicles (DOD/NOAA)

Potential Benefits To Interagency Partners

- NASA test program focused on faster transition of new observing, modeling, and information technologies into near-term aircraft applications as a stepping stone to future satellite applications
- NOAA evaluate emerging observing strategies against operational requirements, cost and operational feasibility
- US Pacific Command demonstrate and evaluate global observing capabilities needed for weather forecasting and real-time decision-making in data void regions
- *NSF* increase research community access to large infrastructure unmanned systems
- CROSSCUTTING provide cost-effective, gap-filling options for decreasing coverage of the Pacific by space borne platforms during the next 10 years

Contact Information

UAS Web Site: http://uas.noaa.gov/

Questions should be directed to: <u>noaa.uas@noaa.gov</u>

Phil Kenul - NOAA UAS Program Senior Technical Advisor (philip.m.kenul@noaa.gov)

Robbie Hood - NOAA UAS Program Director (robbie.hood@noaa.gov)

